Cost efficient data collection for statistical analysis of wear - TRL 6


 One of the most difficult industrial issues related to tribology is the prediction of long term wear or material durability.  In many components and products, materials with or without lubrication are used to reduce wear and maintain functionality of the component.  Required ‘wear life’ may be thousands of hours.  Contrary to the determination of a ‘coefficient of friction’ – which can be done in a few hours, the determination of wear and wear rate under realistic conditions is a long term test. The challenge is twofold : perform low wear rate experiments with many repeats at an economically acceptable cost.  The only way to do this is by a multistation approach (performing many wear experiments simultaneously). 


Parallel tests were performed in our TRL6 prototype 10-station cross-cylinder block-on-cylinder tester. With this method, we test parallel and simultaneously different bulk or coated materials (metals, alloys, polymers, ceramics and composites), at moderate contact pressures and for a prolonged period of time. Adhesive or mild abrasive wear mechanisms are representative for the “actual” applications.

  • Up to 9 kilometers of sliding distance can be realised in a single day, on 10 wear contacts simultaneously.
  • To measure the wear damage, we use weight loss measurements, optical and/or confocal microscopy.  10 data points collected efficiently



b2ap3_thumbnail_10-station Applications   



Efficient screening showed

  • The wear of various materials can be measured in a time efficient and economical way, realistic wear rates simulate actual applications.
  • Statistical analysis of the wear data provides a higher confidence level and allows outlier analysis.
  • Reliability testing of materials becomes economically possible.

b2ap3_thumbnail_10-station_ranking-polymers Applications

Related Posts

By accepting you will be accessing a service provided by a third-party external to