Friction modifiers put to the test. Can we influence friction?

WHY

In the effort to reduce CO2 exhaust, an important approach is to reduce friction in the engine.  One part of the mix of options are ‘friction modifying additives’, such as the well-known GMO, which are known to reduce friction by 5, 10 or 20%. However, the difficult task is to prove the effect of friction modifiers in the engine, since existing engine tests measure the interaction of all sliding and moving components, as well as lubricant viscosity and other effects. In order to isolate and evaluate the efficiency of friction modifiers, a precision frictional approach is required. 

Continue reading
  1778 Hits

Thermosetting polymers for high speed bearings: linking friction and heat

WHY

Polymeric materials are used more and more as cage material for light weight bearing applications, but thermoplastic materials suffer from PV limits.  At high speeds, the polymer may melt easily under light loads.  Thermoset resins don't have this limit, but may still disintegrate under higher temperatures.  In this method, we can apply high speeds and variable loads, to explore the limits of thermosets.

Continue reading
  1738 Hits

Thin layer activation (TLA) technology for on-line wear measurements

WHY

The reliability of industrial equipment, transportation systems, nuclear and conventional power plants etc. can be significantly influenced by surface phenomena such as corrosion and wear. With the increasing pressure on development time and the need for higher performance, there is also an increasing need to measure and quantify the degradation phenomena faster and better. In this perspective, nuclear activation technology - as already used in engine testing- can provide accurate in-situ measurement and precise monitoring of wear, mass transfer, corrosion and erosion.

Continue reading
  1661 Hits

Parallel wear tests to evaluate wear in joint reconstruction - TRL6

WHY

The failure of the hip replacement is often a combination of tribocorrosion of the hip joint materials and inflammations due to wear particles in the body. A new methodology needs to be developed so as to allow for a fast prescreening of the reliability of new biomaterials, in conditions that simulate the actual conditions (e.g. environment, motion, contact pressure, countermaterial). 

Continue reading
  1619 Hits

Friction and wear of thin layers for MEMS

WHY

Evaluating frictional and wear characteristics of very thin nanostructured layers with macro scale tribometers, in the Newton load range, can create unrealistic conditions.  Wear phenomena are highly dependent on the contact conditions: such high loads are not relevant in the case of MEMS. The adhesive and capillary components that contribute to friction, in a micro-contact, can not be simulated with high load devices.  Therefore, there is an increasing need to use new tribological testers and procedures to obtain a better understanding of surface interactions on an appropriate scale.

Continue reading
  1602 Hits

Testing of oils for the automotive industry

WHY

A variety of oils for the automotive industry is available in the market. These oils have different composition, additives and can operate under different conditions (motion, load, speed and temperature). A method need to be used to prescreen the performance and endurance of these oils under different conditions, which are relevant to the automotive industry.    

Continue reading
  1579 Hits

Tribological behavior of lubricating tribo-systems for the watch industry

WHY

One of the main issues in the watch industry is reduce the friction and sticking between moving components. To achieve this, a small quantity of lubricant is added in the contact. However, due to the high expectations of the costumers, the increased lifetime of the watch, the size and geometry of components and contact conditions (loads in the mN range), there is a huge need to develop a tool that can evaluate such lubricating tribo-systems. The main challenge is to perform precision frictional measurements, in conditions that simulate the “actual” application.

Continue reading
  1528 Hits

Friction measurements on complex shapes

 

Or download the pdf direct here

Continue reading
  1527 Hits

Composite polymers: How do they perform in water “tribocorrosion”

WHY

Polymer based composites are considered as one of the most important engineering materials for naval applications. They can be used in the superstructures, decks, bulkheads, advanced mast systems, propellers, propulsion shafts, rudders, pipes, pumps, valves, machinery and other equipment on large ships. In the majority of these applications these composites are subjected to mechanical loading in a corrosive environment. Thus their performance and/or lifetime is strongly dependent on both of these factors. In this application a methodology was developed to evaluate the effect of the corrosive environment (seawater) on the tribological performance of composite polymers is sliding contacts.  

Continue reading
  1479 Hits

Cost efficient data collection for statistical analysis of wear - TRL 6

WHY

 One of the most difficult industrial issues related to tribology is the prediction of long term wear or material durability.  In many components and products, materials with or without lubrication are used to reduce wear and maintain functionality of the component.  Required ‘wear life’ may be thousands of hours.  Contrary to the determination of a ‘coefficient of friction’ – which can be done in a few hours, the determination of wear and wear rate under realistic conditions is a long term test. The challenge is twofold : perform low wear rate experiments with many repeats at an economically acceptable cost.  The only way to do this is by a multistation approach (performing many wear experiments simultaneously). 

Continue reading
  1465 Hits