PROCETS PROJECT
Take advantage of the use of nano-particles for production of composite coatings with superior properties compared to those of hard chromium produced by electroplating or to WC-Co produced by thermal spray.
WHY
Various types of polymers can be used on steel cables, to provide a controlled-friction and noise-reducing coating when used on pulleys. An efficient way to prescreen the behaviour of different types of polymers, in terms of frictional stability and durability, is needed.
Take advantage of the use of nano-particles for production of composite coatings with superior properties compared to those of hard chromium produced by electroplating or to WC-Co produced by thermal spray.
WHY
During the processing of bricks in the construction industry, clays slurries can adhere (stick) to mechanical components such as mixers, hindering their function. In addition, in the drilling industry severe damage of the drills can be caused by the sticking and swelling (due to water adsorption) of soils onto the drills. A methodology needs to be developed to measure the stickiness of clays/soils on metallic components.
WHY
Shock absorber component testing is expensive and time-consuming and this is a limiting factor in developing new materials for this application. There is a need to develop a pre-screening method to get a quick but accurate evaluation of the tribological behavior of materials, without losing too much correlation with the actual conditions (geometry, wear mechanism, load, speed, number of cycles etc.).
WHY
The steering system of cars is based on a rack and pinion system. Over time, the metal on these gears wears out, resulting in a loose fitting. Some other applications also make use of a rack and pinion system to translate a rotary drive motion into a linear displacement. The wear and tear of such systems occurs through a roll-slip mechanism. Therefore a tribological method needs to be developed to simulate such roll-slip contacts and their failure mechanisms.
WHY
Lubricating greases are used in various industrial fields ranging from food, transportation, aeronautical, construction, mining and steel industry. The aim is to decrease frictional forces and to protect industrial components from wear and/or corrosion damage. Their performance depends on interaction properties like adherence to the substrate, cohesion or consistency, and tackiness. However, up to date there is no established quantitative methodology that can be easily applied to efficiently and accurately evaluate the adhesion and tackiness of a grease.
WHY
Examples of corrosion are found in many industrial applications ranging from aeronautical, automotive, naval, and the construction industry over home appliances, water systems, pipelines, and ‘bio’ applications. Corrosion phenomena can be significantly accelerated by the simultaneous occurrence of a mechanical load on the surface: the formation of cracks and surface defects, along with surface strain and stress fields lead to faster diffusion of corrosive ions or the destruction of protective layers (depassivation). Thus there is a need to understand the synergy between wear and corrosion.
WHY
One issue in the pharmaceutical industry, is the abrasion of processing components for pressing the powders. The intensity of the abrasion phenomena strongly depends on the composition and size of the processed powders. Up to date there is no fixed procedure on how to evaluate such abrasion phenomena, in conditions that simulate the realistic process.
WHY
In reality, due to a misalignment, vibrations or other reasons high speed pump rotors can come in contact with the stator, leading to a catastrophic failure. This failure is a result of severe shearing of the contacting surfaces. However, the existing ASTM Galling method (G 196), is performed at very high pressures and very low speeds, and does not simulate the “actual” conditions met at high speeds.
WHY
Polymeric materials are used more and more as cage material for light weight bearing applications, but thermoplastic materials suffer from PV limits. At high speeds, the polymer may melt easily under light loads. Thermoset resins don't have this limit, but may still disintegrate under higher temperatures. In this method, we can apply high speeds and variable loads, to explore the limits of thermosets.